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A~s&wS--This is a theoretical, numerical and experimental study of how to select the spacing (S) between 
horizontal cylinders in an array with laminar natural convection, such that the total heat transfer (q) 
between the array and the ambient is maximized. The volume occupied by the array (height H, width W, 
cylinder length L) and the cylinder diameter (0) are arbitrary but fixed, while the spacing (or number of 
cylinders in the array) varies. The optimal spacing and maximum heat transfer resufts predicted theoretically 
are developed into accurate and well tested correlations by means of numerical simulations and exper- 
imental measurements. The recommended correlations are S,,/D = 2.72(H/D)“‘Ra,-““ +0.263 and 
q,,,_ = 0.448[(H/D)“‘R~,-“~]-“~ where qWX is the dimensionless maximum overall thermal conductance, 
&,, = q,,Dz/[HLWk(Tw- T,)]. The optimal spacing is relatively insensitive to whether the cylinders are 

isothermal or with uniform heat flux. 

1. INlRoDucT1oN 

In this paper we report the results of a theoretical, 
numerical and experimental study of how to deter- 
mine the optimal spacing for horizontal cylinders in 
an array with natural convection heat transfer. The 
volume occupied by the array is fixed. The number of 
cylinders in the array, or the spacing between cylinders 
of fixed diameter, can vary. The optimal spacing 
reported in this paper corresponds to the maximum 
overall heat transfer (or thermal conductance) 
between the array and the surrounding fluid. 

The optimal spacing question is both important 
and timely. It is important because of its obvious 
implications in the design of heat exchangers, surfaces 
with horizontal pin fins, and, generally, the cooling 
by natural convection of a space of fixed size (e.g. 
electronic package). The question is timely in view of 
the large volume of research that has been devoted to 
arrays of horizontal cylinders with natural convection 
on the outside. This body of work was reviewed on 
several occasions (e.g. Guceri and Farouk [I] ; Sad- 
eghipour and Asheghi [2]) and will not be reviewed 
here. Most of this work dealt primarily with the 
detailed interaction between adjacent cylinders (e.g. 

Marsters [3]; Farouk and Guceri [4]), not with the 
overall performance (thermal conductance) of the 
entire array. 

The existence of an optimal spacing for maximum 
heat transfer was noted by Sparrow and Vemuri [5] 
in an experimental study of an array with a large 
number of horizontal pin fins. The heat transfer was 
by combined natural convection and radiation. The 
maximum exhi,bited by the overall heat transfer rate 
was very shallow and corresponded to using an array 
with approximately 35 pin fins. 

Related aspects of this subject were considered by 
Tokura et al. [CJ and Sadeghipour and Asheghi [2]. 
Tokura et al. reported an optimal spacing for a vertical 
column of horizontal cylinders confined by two ver- 
tical plates. It is not at all clear, however, that their 
result corresponds to maximum heat transfer. Their 
recommendation to use six cylinders in the array 
appears to be a trade-off between transferring more 
heat and using more hardware (cylinders). 

Sadeghipour and Asheghi reconsidered the optimal 
spacing question in Tokura et aI.‘s configuration. 
Their experimental results suggest a shallow 
maximum in the variation of the overall heat transfer 
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NOMENCLATURE 

D diameter S cylinder-to-cylinder spacing 
g gravitational acceleration S volume averaged spacing 
H height of array, Fig. 1 T temperature 
k thermal conductivity T, cylinder surface temperature 
L cylinder length, Fig. 1 T, coolant inlet temperature 
n number of cylinders in the volume u, u velocity components 

HLW U, V dimensionless velocity components 
4 number of half-cylinders in the u mean velocity through S-wide channel 

computational domain W frontal width of array, Fig. 1 
Nun single cylinder overall Nusselt number x, y horizontal and vertical coordinates 
P pressure X, Y dimensionless coordinates. 
P dimensionless pressure 
Pr Prandtl number, v/cc 
41 heat transfer from a single cylinder Greek symbols 
4 heat transfer from the entire array thermal diffusivity 
4 dimensionless heat transfer volumetric ; coefficient of volumetric thermal 

density expansion 
Ran Rayleigh number, gjD3(Tw- Tm)/(c(v) 0 dimensionless temperature 
Ran Rayleigh number, gfiH3(Tw-- T,)/(w) p density. 

rate with the cylinder-to-cylinder spacing. The final 
correlation for this relationship, however, does not 
indicate a maximum with respect to spacing : the over- 
all heat transfer increases monotonically with the 
spacing, and reaches its highest values (or plateau) 
when the S/D ratio exceeds approximately 15. 

The absence of a correlation for the reported opti- 
mal spacings, and the inability to predict optimal spa- 
cings in new configurations defined the objectives of 
the present study. To begin with, we focused exclus- 
ively on heat transfer by natural convection (without 
radiation). Our objective was not only to determine 
the optimal spacings for various situations, but also 
to correlate our results in a compact dimensionless 
relation valid for any array with laminar natural con- 
vection. 

To achieve this objective we conducted the study in 
three phases. In the first, we developed a pure theory 
to prove the existence of the optimal spacing, and to 
reveal the proper dimensionless groups and analytical 
form of the optimal-spacing correlation. In the second 
phase, we simulated the natural convection flow and 
temperature fields, and varied the spacing (or number 
of cylinders) of the array to generate optimal-spacing 
data to be correlated based on the theory. Finally, in 
the third phase of the study we experimented with 
several arrays of cylinders that occupied the same 
volume. The purpose of these experiments was to 
determine the optimal spacing through direct heat 
transfer and temperature measurements, and to test 
in this way the accuracy of the numerical phase of the 
study. 

2. THEORETICAL RESULTS 

We begin with a theoretical argument to dem- 
onstrate that there exists an optimal cylinder-to-cyl- 

inder spacing for maximum heat transfer, and to 
identify the proper dimensionless groups needed to 
correlate the optimal spacing results determined more 
accurately (numerically and experimentally). 

Consider the bundle of horizontal cylinders shown 
in Fig. 1. The overall dimensions of the bundle 
(H, L, W) and the cylinder diameter (D) are fixed. 
Natural convection heat transfer (q) occurs between 
the cylinder surfaces (T,J and the surrounding fluid 
reservoir (T,). In the following analysis we address 
the question of how to select the number of cylinders 
in the bundle, or the cylinder-to-cylinder spacing (S), 
such that the overali thermal conductance between the 
bundle and the ambient, q/( T,- T,) is maximized. 
For the sake of conciseness we assume that the cyl- 
inders are staggered, and that their centers form equi- 
lateral triangles. Other array types can be treated simi- 
larly. The problem is similar to that of determining 

(a) 
Fig. 1. Bundle of horizontal cylinders immersed in a quiesc- 
ent fluid (a), and detail of one of the channels traveled by 

the fluid (b). 



The optimal spacing between horizontal cylinders 2049 

the optimal number of plates in a stack cooled by length H is proportional to the pressure difference 
natural or forced convection [7-l 11. that drives the flow. The pressure difference is AP = 

When the spacing S .and the Rayleigh number are pgH/3(Tw - T,), or the difference between the hydro- 
sulIIciently large, each horizontal cylinder is coated by static pressures under two H-tall columns of coolant, 
a distinct boundary layer, and the surrounding fluid one filled with T, fluid, and the other with T, fluid. 
is at the temperature T,. We are assuming that The mean velocity of the channel flow, U, can be 
(H, IV) >> (D+S), and that Run >> 1, where approximated using the Hagen-Poiseuille solution for 
Ran = g@r 3 (T,., - T,)/(av). The heat transfer from flow between two parallel plates (spacing S, flow 
one cylinder is length H), 

q, z;Nu,nDL(T,-T,) (1) 

where the overall Nusselt number is (cf. Morgan [ 121, 
lo4 < Ra, < 10’) 

Nun = 0.48 Raa4. (2) 

The total number of cylinders in the bank of cross- 
sectional area H x W is 

HW 

(7) 

The total flow rate through the bundle, 
h(pUSL) * W/(S+D), leads to the total heat transfer 
rate tic,( T, - T,), which can be summarized as 

SLW 
qsma”s r 12~3(S+~) 

k(T, - T,)Ra,. (8) 

n = (S+Dy cos 30 
(3) 

therefore the total heat transfer from the bank is 
q=nq, or 

The key feature of this estimate is that when S is small 
and decreases, the thermal conductance q/( T, - T,) 
decreases as S3. 

Figure 2 summarizes the trends uncovered so far. 
The actual thermal conductance would be represented 
by the solid curve sketched in the figure. The peak of 
this curve corresponds to a spacing (S,,) that can be 
approximated by intersecting the two asymptotes 17, 
111,91largeS = q_,, s. The result of eliminating q between 
equations (4) and (8) is 

9largeS z 1.74 
HLW 

----k(Tw-Tm)Ra~4. (4) 
(S+ 0)’ 

This result shows that, when the spacing is large, the 
overall thermal conductance q/ (T, - T,) decreases as 
S increases. 

Consider now the opposite extreme when the cyl- 
inders almost touch, and the flow is almost cut off. In 
this limit the temperature of the coolant that exits 
slowly through the upper plane of the bundle (L x IV) 
is essentially the same as the cylinder temperature T,. 
The heat transfer from the bundle to the coolant is 
equal to the enthalpy gained by the coolant, 
9 = IjlcP(Tw-- T,), where ti is the mass flow rate 
through the L x W plane. 

To obtain an order-of-magnitude estimate for the 
flow rate, we note that li? is composed of several 
streams [total number = W/(S+D)J, each with a 
cross-sectional area Sx L in the plane of one hori- 
zontal row of cylinder axes. The thickness of the chan- 
nel traveled upward by each stream varies between a 
minimum value (S) at the row level, and a maximum 
value at a certain level between two rows. The volume- 
averaged thickness of one channel is 

S = S+D-0.907& 

however, we may adjust this estimate by using 1 in 
place of the factor 0.907 to account for the fact that 
the channel closes (i.e. the flow must stop) when the 
cylinders touch (S = 0) 

S= SS+2D 
S+D. (6) 

When S is sufEciently small, the flow rate through 

S opf . 2 + &p,lD 
D (1+s,,,,D)2,3 = 2.75 

This relation is plotted in Fig. 3, which shows that 
S,,/D is almost proportional to the group 
(H/D) “3Ra; “4. In other words, a simpler alternative 
to the order of magnitude estimate obtained in equa- 
tion (9) is 

S (3 
l/3 

2?EN 

D 5 
Ra, ‘/4 

or 

0 1,’ I 

0 sopt 
s 

Fig. 2. The optimal cylinder-to-cylinder spacing for 
maximum thermal conductance, as the intersection of the ..- 

each channel of cross sectional area SL and flow large- and small-S asymptotes. 
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1 

(H/D)“J Ri;’ 

Fig. 3. The optimalcylinder-to-cylinder spacing as a function 
of bundle height and cylinder diameter (Pr = 0.72). 

l/12 
Ra, ‘I4 (11) 

where Ru, = gj#?‘(Tw-- T,)/(av). Equation (11) 
shows that the optimal spacing is approximately pto- 
portional to H’~‘D-‘I’z, which means that it is almost 
insensitive to changes in the cylinder diameter. 

3. NUMERICAL RESULTS 

In this section and the next we report numerical 
and experimental results for the optimal cylinder-to- 
cylinder spacing. The objective of these empirical 
phases of our study was to test and improve the accu- 
racy of the correlation determined theoretically, equa- 
tions (9)-( 11). 

The natural convection and heat transfer in an array 
of horizontal cylinders was simulated numerically by 
focusing on a vertical channel formed between two 
adjacent rows of cylinders, Fig. 4. It was assumed that 
the flow is laminar, such that there is no exchange 
of fluid and energy between adjacent channels. The 
regime is laminar when RaH < 10gPr (Bejan and Lage 
[13], because H is the relevant vertical dimension of 
the channel with boundary layer flow. 

The mass, momentum and energy equations were 
simplified in accordance with the assumptions of two- 
dimensional steady state, nearly constant properties, 
and Boussinesq approximation in the buoyancy term 
of the momentum equation for the vertical (y) direc- 
tion 

!?+“=() 
ax ay 

ug+ua,Z 
aY 

- A dp +)&7*u 
P ax (13) 

ug+,du= 
ay 

- ; $ +vV2u+g~(T- T,) (14) 

III UJ 
U-+v-=aV2T ax ay (1% 

where Vz = #/ax2 + a’/@. The horizontal and ver- 
tical velocity components are u and u. The origin of 
the Cartesian frame (x, r) is focated in the bottom kft 
corner of the computational domain. The com- 
putational domain contains the actual channel of 
height H/D (fixed), plus an inlet (bottom) section and 
an outlet (top) section. Accuracy tests showed that 
when the inlet length is 2.50 and the outlet length 
30, the calculated heat transfer from the channel is 
insensitive (with changes less than 1%) to further 
doubling of the inlet and outlet lengths. 

The flow boundary conditions were: zero normal 
stress and vertical flow (u = 0) at the inlet to the 
computational domain (X = 0) ; free slip and no pen- 
etration at the fluid interfaces (planes of symmetry) 
between two consecutive cylinders ; no slip and no 
penetration at the cylinder surfaces, and free slip and 
no penetration on the vertical boundaries of the inlet 
section. It is important to note that the forcing of 
free slip and no penetration conditions on the vertical 
boundaries of the outlet section would induce an arti- 
ficial acceleration of the fluid (updraft, chimney effect) 
through the cylinder-to-cylinder channel. To avoid 
this effect, a zero stress inlet condition was specified 
along one of the sides of the outlet section, specifically, 
on the side opposite the topmost cylinder (Fig. 4). 

The temperature boundary conditions were T = T, 
on the cylinder surfaces, and T = T, at the bottom 
end of the computational domain. The remaining por- 
tions of the boundary of the computational domain 
were modelled as adiabatic. 

Equations (12)-( 15) were nondimenionalized by 
defining the dimensionless variables 

(X Y) = $$ (D, V) = (aiD);;;pr),,i (16) 

0= 
T-T ------s P= PD’ 
TV!--7-m pa(RaDPr)li2 

(17) 

Numerical solutions were generated for Pr = 0.72. 
The system of equations was solved on a Cray-YMP 
using a finite element package [14]. Grid refinement 
tests showed that 40 nodes per D in x and y were 
necessary for Ra, = 104, such that the further doub- 
ling of the number of nodes caused a change of less 
than 2% in the heat flux from each cylinder. 

The accuracy of the numerical method was checked 
further by placing a single half cylinder in the com- 
putational domain, and calculating the overall Nusselt 
number Nun. The values obtained were Nun = 3.20 
for Ra, = 103, and Nun = 5.10 for Rc+, = 104. These 
values agree within 6% with the large body of empiri- 
cal results compiled by Morgan [12], and fall between 
the error bars indicated by Morgan for the correlation 
listed in equation (2). 

For each array geometry (H/D, S/D) the solutions 
were generated by solving for Ra, = lo3 first, and 
then using that solution as initial condition for the 
next higher Ra,. The computational time depended 
strongly on the array geometry and Rayleigh number. 
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n,- 5 6 7 6 

--)I It- (S + D)/2 

6 6 

Fig. 4. The computational domain, and the effect of cylinder-to-cylinder spacing on the flow and tem- 
perature fields (H/D = 10, Ran = lo*, Pr = 0.72). The streamlines are on the left, and isotherms on the 

right. 

Figure 4 shows a sample of the flow and tem- 
perature fields calculated for H/D = 10 and 
Ra, = 104. The streamline and isotherm patterns are 
arranged in a way that illustrates our search for the 
optimal cylinder-to-cylinder spacing of an array in a 
fixed volume. We hxed the height of the array (H), 
and decreased the spacing (S) : we did this discretely 
(in steps), each time by adding one more to the num- 
ber of cylinders (nC) in the channel of height H. 

During this sequence we monitored the total heat 
transfer from all the half-cylinders, to see how it 
responds to changes in S. A sample is shown in Fig. 
5, where the ordinate parameter represents the dimen- 
sionless heat transfer volumetric density, 

02 
‘= HiWk(T,-T,) (18) 

where q is the total heat transfer from an array of 
fixed volume HLW. Figure 5 shows that there is an 
optimal spacing for maximum heat transfer. The 
S&D values were determined by fitting the highest 
three 4 points with a parabola, and solving 
iTr@(S/D) = 0. The best practical spacing, of course, 
corresponds to the number of cylinders n (an integer) 
that maximizes the total heat transfer rate from the 
given space. 

The resulting S,,/D data are reported in Fig. 3. 

0 1 2 3 

SlO 
Fig. 5. The effect of the cylinder-to-cylinder spacing on the 

total heat transfer from the array (H/D = 10, Pr = 0.72). 

They are correlated very nicely in the manner antici- 
pated in Section 2, namely by using the group 
(H/D) “‘Ra, ‘I4 on the abscissa. The optimal spacings, 
however, are consistently 2.5 times larger than the 
values calculated based on equation (9). The function 
of type (10) that fits the numerical data the best 
(within 1.7% mean error) is 
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10 , I 

0.1 1 
(HID)“9 Rib” 

Fig. 6. The maximum array heat transfer rate, or maximum 
heat transfer volumetric density, corresponding to the 

numerical optimal spacing data of Fig. 3. 

113 

Ra,‘14 +0.263 (19) 

where 0.263 is a small correction term. 
The maximum heat transfer density that cor- 

responds to the optimal spacing of Fig. 3 is reported 
in Fig. 6. The dimensionless group used on the 
abscissa of Fig. 6 is the result of the theory : it is easy 
to show that when equation (19) is substituted without 
the 0.263 correction into equation (4) or equation (8), 
the group g/Ra, ‘I’ becomes a function of only the 
group (H/D) ‘I3 Ra, ‘j4, which appeared also on the 
abscissa of Fig. 3. The numerical data, however, are 
correlated better if we plot q instead of #Rag4 on the 
ordinate. The data shown in Fig. 6 are reproduced 
within 1.7% by the correlation 

&,ax = 0.448 [ (g”3Ra,“*]“6. (20) 

4. EXPERIMENTAL RESULTS 

Figure 7 shows the main features of the arrays used 
in the experimental phase of this study. The array 
volume was fixed: H = 39.4 mm, L = 142 mm and 
W = 44.5 mm. Three arrays were constructed by vary- 
ing from 5 to 3 the number of horizontal rows in the 
H x W cross-section. The number of cylinders of the 
three arrays were 23, 14 and 8, and the respective 
spacings S/D were 0.5, 1 and 2. 

The apparatus construction and measurement tech- 
nique retained many of the features described by Mar- 
sters [3]. The longitudinal conduction and loss of heat 
through the cylinder ends were minimized by holding 
each cylinder between two vertical wooden walls. The 
array assembly was held inside a 2 m-high enclosure 
with a horizontal cross-section of 0.4 x 0.4 m. The 
bottom and top ends of the enclosure were open to 
room air. To reduce the e&t of radiation, the internal 
and external surfaces of the enclosure were’ covered 

with aluminum foil. By using the method of cal- 
culation outlined in Morgan [12] and Sadeghipour 
and Asheghi [2], we estimated that in our experiments 
the radiation contribution to the overall heat transfer 
rate was less than 1.6%. The maximum temperature 
recorded on the array (Z’,,,,, Fig. 7) was 47.2”C. 

Each cylinder was a low density electrical heater 
consisting of a helically wound heating element (resist- 
ance 96 0) held in a ceramic insulator filled with 
conductive magnesium oxide. The outer cover was 
polished 304 stainless steel, which provided adequate 
rigidity and resistance to oxidation. The heaters were 
connected in parallel, and powered by a variable auto- 
transformer that produced a voltage between 0 and 
140 v. 

The temperatures Tw,, T,, and T, were measured 
in the vertical midplane of the array, i.e. half-way 
between the two wooden walls. Copper-constantan 
type T thermocouples were imbedded in 1 mm hemi- 
spherical depressions machined into the stainless steel 
sheath of the heater. The thermocouple readings were 
referenced to a mixture of crushed ice and water. As 
the heat transfer rate per cylinder was distributed uni- 
formly throughout the array, the maximum tem- 
perature was registered on the trailing row of cylinders 
(Tw,). The temperature was practically uniform 
(within 0.04”C) around the cylinder circumference : 
we measured this variation by running experiments 
with a single cylinder, and rotating the cylinder to 
change the position of the thermocouple on the cir- 
cumference, 

The overall thermal conductance 4 was calculated 
after measuring the power dissipated in all the heaters 
(q), the maximum temperature (T,,) and the room 
temperature at the bottom (inlet) of the enclosure 
(T,). The 4 values were calculated using T,, in place 
of T, in equation (18). The properties of air were 
evaluated at the average temperature (T,,,+- T,)/2, 
where T,., = (T,, + Tw2)/2. 

The uncertainties associated with the 4 and RaD 
values determined in this manner were 2.5 and 4.9%, 
respectively. These were estimated based on the 
method of Kline and McClintock [ 151, and the fol- 
lowing inputs : 0.84% uncertainty in T,,, T,, and T,, 
resulting from the calibration of the thermocouples ; 
0.5 and 1% uncertainties in the measurement of volt- 
age and current, respectively ; and 0.28% for cP, 2% 
for p and 1% for k (listed in ref. [16]). 

We started each run by setting the voltage and cur- 
rent for the resistance heaters. We then waited 3-4 h 
while monitoring the changes in voltage, current, T,,, 
Tw2 and T,. We ended the run by taking final readings 
when the relative change in voltage, current and tem- 
perature readings was less than 0.2%, 0.2% and 
0.06% (determined by repeating 10 h-long runs at the 
same spacing and RaD), respectively. These relative 
changes are small when compared with the uncer- 
tainties in the respective measurements. 

Figure 8 shows a summary of the heat transfer 
experiments. The figure shows also the curve fitting 
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+0.5, n=23 

-LB 
Fig. 7. Details of the test section of the experimental apparatus. 

procedure used for determining S,,,/D, i.e. the same 
procedure as in the numerical part of the study (Fig. 
5). The optimal spacings calculated in this manner are 
reported in Table 1. Again, the best practical array is 
the one with the largest overall thermal conductance, 
namely the case n = 14 (Figs. 7 and 8). The curve 
fitting of the (r data in Fig. 8 is used only as a test of 

Fig. 8. Experimental results for the total heat transfer rate 
from the array (H/D = 6.2, Pr = 0.72). 

% =2, n=8 

end wall 
(wo@ 

the accuracy of the method employed in the numerical 
part of the study. 

We used these experimental results to verify the 
accuracy of the numerical method described in the 
preceding section. The numerical results have been 
added to Table 1. We performed the numerical work 
for H/D = 6.2 and Pr = 0.72, which correspond to 
the experimental conditions. First, we modelled the 
cylinders as surfaces with uniform llux, and found 
that the maximum temperature occurs at the top of 
the topmost cylinder. The optimal spacing determined 
numerically agrees within 17% with the cor- 
responding experimental result. 

We used this opportunity to see if the type of cyl- 
inder thermal boundary condition has an effect on the 
optimal spacing. We solved again the experimental 
configuration numerically, this time modelling the cyl- 
inders as isothermal, and found the results listed in 
the bottom line of Table 1. In place of T, in equation 
(18) we used the average temperature of the topmost 
cylinder. It is clear that the optimal spacing is rela- 
tively insensitive to whether the array is uniform-flux 
or isothermal. This conclusion is important, because 
it means that the corelation (19) is general. 

Additional evidence that the present results are cor- 
rect is provided by the experimental study of Sparrow 
and Vemuri [5]. As pointed out in the Introduction, 
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Table 1. Comparison between the optimal spacings determined experimentally, and 
the corresponding results obtained based on numerical simulations (H/D = 6.2, 

Pr = 0.72) 

&ID 

Experiments 
Numerical, uniform flux cylinders 
Numerical, isothermal cylinders 

200 

1.78 
1.54 

Ra, 
300 350 400 

1.44 1.47 1.45 
1.68 1.62 1.61 
1.48 1.46 1.44 

Sparrow and Vemuri maximized the total heat 
transfer rate from an isothermal vertical plate 
(H = I+‘= 7.62 cm) with horizontal pin fins 
(D = 0.635 cm). Because the heat transfer maximum 
was rather flat, Sparrow and Vemuri concluded that 
the optimal spacing occurs when the total number of 
pins fins is between 30 and 40. The flat maximum was 
observed at Rayleigh numbers (based on H) in the 
range 4 x 105-16 x 105. 

Translated into the terminology employed in the 
present study, Sparrow and Vemuri’s conclusion 
means that the optimal spacing is in the range 
1.04 < S,,,/D < 1.35, when the Rayleigh number is 
in the range 230 < Rq, < 920. Their L&,/D estimate 
agrees very well (within 10%) with the present exper- 
imental results (Table 1). This is remarkable, 
especially if we recognize that (i) the H/D ratios were 
different (12 for Sparrow and Vemuri, vs 6.2 in the 
present study), (ii) in their experiments radiation was 
important and (iii) their cylinders (pin fins) conducted 
heat longitudinally. 

5. CONCLUSIONS 

In this paper we developed fundamental results for 
the selection of the spacing between horizontal cyl- 
inders in an array of fixed volume. The heat transfer 
is by laminar natural convection. The optimal spacing 
reported in equation (19) corresponds to the 
maximum thermal conductance between the entire 
array and the surrounding fluid. 

More important fundamentally is the conclusion 
that the optimal spacing and maximum thermal con- 
ductance can be expressed in compact dimensionless 
relations. The relevant dimensionless groups have 
been identified, and each relation contains only two 
groups : S,,,JD and (H/D)‘13 Ru,“~ for optimal 
spacing, equation (19), and &,.X and (H/D)‘13 Ra; ‘I4 
for maximum thermal conductance, equation 
(20). 

These developments were possible only because we 
began the study with a purely theoretical look at the 
problem of predicting the optimal spacing. It was only 
after the theory that we resorted to empiricism 
(numerical and experimental), which was necessary 
in order to improve the accuracy of the theoretical 
expressions found for L&.,/D and &,aX. Furthermore, 
the dimensionless groups and analytical expressions 

revealed by the theory had the effect of minimizing the 
amount of numerical and experimental information 
needed for developing the recommended results, equa- 
tions (19) and (20). 

The corresponding problem of optimizing the cyl- 
inder spacing in an array with forced convection is 
treated in a new book [17]. 
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